Topological confinement in graphene bilayer quantum rings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological confinement in bilayer graphene.

We study a new type of one-dimensional chiral states that can be created in bilayer graphene (BLG) by electrostatic lateral confinement. These states appear on the domain walls separating insulating regions experiencing the opposite gating polarity. While the states are similar to conventional solitonic zero modes, their properties are defined by the unusual chiral BLG quasiparticles, from whic...

متن کامل

Electrostatically confined quantum rings in bilayer graphene.

We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B(0)) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In...

متن کامل

Gate-defined quantum confinement in suspended bilayer graphene.

Quantum-confined devices that manipulate single electrons in graphene are emerging as attractive candidates for nanoelectronics applications. Previous experiments have employed etched graphene nanostructures, but edge and substrate disorder severely limit device functionality. Here we present a technique that builds quantum-confined structures in suspended bilayer graphene with tunnel barriers ...

متن کامل

Bilayer graphene. Tunable fractional quantum Hall phases in bilayer graphene.

Symmetry-breaking in a quantum system often leads to complex emergent behavior. In bilayer graphene (BLG), an electric field applied perpendicular to the basal plane breaks the inversion symmetry of the lattice, opening a band gap at the charge neutrality point. In a quantizing magnetic field, electron interactions can cause spontaneous symmetry-breaking within the spin and valley degrees of fr...

متن کامل

Topological confinement in an antisymmetric potential in bilayer graphene in the presence of a magnetic field

We investigate the effect of an external magnetic field on the carrier states that are localized at a potential kink and a kink-antikink in bilayer graphene. These chiral states are localized at the interface between two potential regions with opposite signs.PACS numbers: 71.10.Pm, 73.21.-b, 81.05.Uw.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Physics Letters

سال: 2010

ISSN: 0003-6951,1077-3118

DOI: 10.1063/1.3431618